АТОМНАЯ СТАНЦИЯ — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определенной проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) [1].
Классификация АЭС
Атомные электростанции можно классифицировать по нескольким направлениям:
1. По типу реакторов:
· реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;
· реакторы на легкой воде;
· реакторы на тяжелой воде;
· реакторы на быстрых нейтронах;
· субкритические реакторы, использующие внешние источники нейтронов;
· термоядерные реакторы.
2. По виду отпускаемой энергии:
· атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;
· атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.
На атомных станциях, расположенных на территории России, имеются теплофикационные установки, они необходимы для подогрева сетевой воды.
Принцип работы
На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором.
Энергия, выделяемая в активной зоне реактора, передается теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счет теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).
Помимо воды, в различных реакторах в качестве теплоносителя и охладителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферного), избавиться от компенсатора давления.
Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (водо-водяной энергетический реактор). Реакторы типа РБМК (реактор большой мощности канального типа) используют один водяной контур, реакторы на быстрых нейтронах — два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.
В случае невозможности использования большого количества воды для конденсации пара вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Устройство АЭС
Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нем размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ) (см. БЛОЧНЫЙ ЩИТ УПРАВЛЕНИЯ) [2].
Рисунок 1 – Условная схема атомной электростанции:
1 – ядерный реактор; 2 – парогенератор; 3 – турбина; 4 – конденсатор; 5 – градирня; 6 – конденсаторный насос; 7 – циркуляционный насос
Атомные электростанции с одноконтурным реактором
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
Атомные электростанции с двухконтурным реактором
Двухконтурную схему применяют на атомных станциях с водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара (см. ВОДЯНОЙ ПАР). Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
Передовой разработкой в сфере двухконтурных реакторов выступает модель ВВЭР-1200, предложенная концерном «Росэнергоатом». Она разработана на базе модификаций реактора ВВЭР-1000, которые изготавливались по заказам из-за рубежа в 90-х г. и в первых годах текущего тысячелетия. В новой модели улучшены все параметры предшественника и предусмотрены дополнительные системы безопасности для снижения риска выхода радиоактивного излучения из герметичного отделения реактора. Новая разработка обладает рядом преимуществ — ее мощность выше на 20 % по сравнению с предыдущей моделью, КИУМ достигает 90 %, она способна работать в течение полутора лет без перегрузки топлива (обычные сроки составляют 1 год), ее эксплуатационный период равен 60 годам.
Атомные электростанции с трехконтурным реактором
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
Современный 3-контурный реактор БН-800, разработанный в 80–90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.
В рассматриваемом реакторе могут применяться различные виды топлива — обычные с окисью урана или МОКС-топливо на основе урана и плутония. Использование последнего приносит ряд преимуществ: во-первых, в этом случае могут быть использованы запасы энергетического плутония, во-вторых, появляется возможность утилизации оружейного плутония и сжигания изотопов актиноидов, содержащихся в облученном топливе тепловых реакторов и являющихся долгоживущими.
Показатель электрической мощности модели — 880 мегаватт, тепловой мощности — 2100 мегаватт.
Преимущества и недостатки атомных станций
К преимуществам АЭС следует отнести:
– отсутствие выбросов парниковых газов в атмосферу. Вредные выбросы присутствуют лишь в тех случаях, когда подключаются резервные дизельные генераторы, что происходит редко;
– существенное сокращение эмиссии углекислого газа;
– более низкий уровень радиоактивного излучения в сравнении с угольными электростанциями;
– отсутствие зависимости от источников топлива ввиду того, что для работы АЭС оно требуется в небольших объемах;
– высокую мощность (от 1000 до 1600 мегаватт на энергоблок) и круглосуточную работу;
– низкую стоимость производства энергии (что особенно относится к тепловой).
Недостатки атомных электростанций:
– опасность облученного топлива, переработка которого является сложной и дорогостоящей;
– весьма тяжкие последствия для окружающей среды в случае возникновения чрезвычайных ситуаций (см. ЧРЕЗВЫЧАЙНАЯ СИТУАЦИЯ);
– необходимость высоких капиталовложений.
Литература
1. СП 13.13130.2009 «Атомные станции. Требования пожарной безопасности».
2. Официальный сайт РОСАТОМ — https://www.rosatom.ru/about-nuclear-industry/powerplant/.
Узнавайте о наших акциях, спецпредложениях, получайте бонусы и скидки от партнеров портала ProPB
Расчет категорий по взрывопожарной и пожарной опасности
Калькуляторы расчета пожарного риска для общественных зданий
Калькуляторы расчета пожарного риска для производственных объектов
Проверочные листы МЧС с комментариями эксперта
Организации в области Пожарной безопасности
Системы противопожарной защиты
Первичные средства пожаротушения
Источники наружного противопожарного водоснабжения
Требования к зданиям
Выбор системы противопожарной защиты для зданий
Выбор системы противопожарной защиты для сооружений
Определение требуемого типа СОУЭ
Выбор системы противопожарной защиты для оборудования
Определение необходимого уровня звука СОУЭ