Все самое важное здесь!
ПОДПИСКА PRO ПБ
Мобильное приложение "Пожарная безопасность"
youtube dzen youtube vk instagram rutube
Пожарный календарь

ПРИКАЗ ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ №404 от 10.07.2009


Дата принятия: 10.07.2009

Статус: Действующий

Редакция: 14.12.2010

Комментарии: -

Примечание: -
Порядковый номер: 404

Зарегистрировано в Минюсте РФ 17 августа 2009 г. N 14541

 


 

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ

ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ

ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ 

ПРИКАЗ

от 10 июля 2009 г. N 404

 

ОБ УТВЕРЖДЕНИИ МЕТОДИКИ

ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА

НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ

Список изменяющих документов

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

В соответствии с Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" <*> и Постановлением Правительства Российской Федерации от 31 марта 2009 г. N 272 "О порядке проведения расчетов по оценке пожарного риска" <**> приказываю:

--------------------------------

<*> Собрание законодательства Российской Федерации, 2002, N 52 (часть I), ст. 5140; 2005, N 19, ст. 1752; 2007, N 19, ст. 2293; 2007, N 49, ст. 6070; 2008, N 30 (часть II), ст. 3616.

<**> Собрание законодательства Российской Федерации, 2009, N 14, ст. 1656.

 

Утвердить прилагаемую методику определения расчетных величин пожарного риска на производственных объектах.

 

Первый заместитель Министра

Р.Х.ЦАЛИКОВ

 

 

 

 

 

Приложение

к Приказу МЧС России

от 10.07.2009 N 404

 

МЕТОДИКА

ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА

НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ

Список изменяющих документов

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

I. Общие положения

 

1. Настоящая методика определения расчетных величин пожарного риска на производственных объектах (далее - Методика) устанавливает порядок расчета величин пожарного риска на производственных объектах (далее - объект).

Положения настоящей Методики не распространяются на определение расчетных величин пожарного риска на производственных объектах специального назначения, в том числе объектах военного назначения, объектах производства, переработки, хранения радиоактивных и взрывчатых веществ и материалов, объектах уничтожения и хранения химического оружия и средств взрывания, наземных космических объектах и стартовых комплексах, горных выработках, объектах, расположенных в лесах.

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

2. Расчеты по оценке пожарного риска проводятся путем сопоставления расчетных величин пожарного риска с соответствующими нормативными значениями пожарных рисков, установленными Федеральным законом от 22 июля 2008 г. N 123-ФЗ "Технический регламент о требованиях пожарной безопасности" <*> (далее - Технический регламент).

--------------------------------

<*> Собрание законодательства Российской Федерации, 2008, N 30 (часть I), ст. 3579.

 

3. Определение расчетных величин пожарного риска на объекте осуществляется на основании:

а) анализа пожарной опасности объекта;

б) определения частоты реализации пожароопасных ситуаций;

в) построения полей опасных факторов пожара для различных сценариев его развития;

г) оценки последствий воздействия опасных факторов пожара на людей для различных сценариев его развития;

д) наличия систем обеспечения пожарной безопасности зданий, сооружений и строений.

4. Расчетные величины пожарного риска являются количественной мерой возможности реализации пожарной опасности объекта и ее последствий для людей.

Количественной мерой возможности реализации пожарной опасности объекта является риск гибели людей в результате воздействия опасных факторов пожара, в том числе:

риск гибели работника объекта;

риск гибели людей, находящихся в селитебной зоне вблизи объекта.

Риск гибели людей в результате воздействия опасных факторов пожара на объекте характеризуется числовыми значениями индивидуального и социального пожарных рисков.

5. Для целей настоящей Методики используются основные понятия, установленные статьей 2 Технического регламента.

 

II. Общие требования к определению расчетных величин

пожарного риска

 

Анализ пожарной опасности объекта

 

6. Анализ пожарной опасности объекта предусматривает:

а) анализ пожарной опасности технологической среды и параметров технологических процессов на объекте;

б) определение перечня пожароопасных аварийных ситуаций и параметров для каждого технологического процесса;

в) определение для каждого технологического процесса перечня причин, возникновение которых позволяет характеризовать ситуацию как пожароопасную;

г) построение сценариев возникновения и развития пожаров, влекущих за собой гибель людей.

7. Анализ пожарной опасности технологической среды и параметров технологических процессов на объекте предусматривает сопоставление показателей пожарной опасности веществ и материалов, обращающихся в технологическом процессе, с параметрами технологического процесса.

Перечень потенциальных источников зажигания пожароопасной технологической среды определяется посредством сопоставления параметров технологического процесса и иных источников зажигания с показателями пожарной опасности веществ и материалов.

8. Определение перечня пожароопасных аварийных ситуаций и параметров для каждого технологического процесса осуществляется на основе анализа пожарной опасности каждого из технологических процессов, предусматривающего выбор ситуаций, при реализации которых возникает опасность для людей, находящихся в зоне поражения опасными факторами пожара, взрыва и сопутствующими проявлениями опасных факторов пожара.

Не подлежат рассмотрению ситуации, в результате которых не возникает опасность для жизни и здоровья людей. Эти ситуации не учитываются при расчете пожарного риска.

9. Для каждой пожароопасной ситуации на объекте приводится описание причин возникновения и развития пожароопасных ситуаций, мест их возникновения и факторов пожара, представляющих опасность для жизни и здоровья людей в местах их пребывания.

10. Для определения причин возникновения пожароопасных ситуаций рассматриваются события, реализация которых может привести к образованию горючей среды и появлению источника зажигания.

Наиболее вероятными событиями, которые могут являться причинами пожароопасных ситуаций на объектах, считаются следующие события:

выход параметров технологических процессов за критические значения, который вызван нарушением технологического регламента (например, перелив жидкости при сливо-наливных операциях, разрушение оборудования вследствие превышения давления по технологическим причинам, появление источников зажигания в местах образования горючих газопаровоздушных смесей);

разгерметизация технологического оборудования, вызванная механическим (влияние повышенного или пониженного давления, динамических нагрузок и т.п.), температурным (влияние повышенных или пониженных температур) и агрессивным химическим (влияние кислородной, сероводородной, электрохимической и биохимической коррозии) воздействиями;

механическое повреждение оборудования в результате ошибок работника, падения предметов, некачественного проведения ремонтных и регламентных работ и т.п. (например, разгерметизация оборудования или выход из строя элементов его защиты в результате повреждения при ремонте или столкновения с железнодорожным или автомобильным транспортом).

11. На основе анализа пожарной опасности объекта, при необходимости, проводится определение комплекса дополнительных мероприятий, изменяющих параметры технологического процесса до уровня, обеспечивающего допустимый пожарный риск.

12. Для выявления пожароопасных ситуаций осуществляется деление технологического оборудования (технологических систем), при их наличии на объекте, на участки. Указанное деление выполняется исходя из возможности раздельной герметизации этих участков при возникновении аварии. Рассматриваются пожароопасные ситуации как на основном, так и вспомогательном технологическом оборудовании. Кроме этого, учитывается также возможность возникновения пожара в зданиях, сооружениях и строениях (далее - здания) различного назначения, расположенных на территории объекта.

В перечне пожароопасных ситуаций применительно к каждому участку, технологической установке, зданию объекта выделяются группы пожароопасных ситуаций, которым соответствуют одинаковые модели процессов возникновения и развития.

При анализе пожароопасных ситуаций, связанных с разгерметизацией технологического оборудования, рассматриваются утечки при различных диаметрах истечения (в том числе максимальные - при полном разрушении оборудования или подводящих/отводящих трубопроводов).

 

Определение частоты реализации пожароопасных ситуаций

 

13. Для определения частоты реализации пожароопасных ситуаций на объекте используется информация:

а) об отказах оборудования, используемого на объекте;

б) о параметрах надежности используемого на объекте оборудования;

в) об ошибочных действиях работника объекта;

г) о гидрометеорологической обстановке в районе размещения объекта;

д) о географических особенностях местности в районе размещения объекта.

14. Для определения частоты реализации пожароопасных ситуаций могут использоваться статистические данные по аварийности или расчетные данные по надежности технологического оборудования, соответствующие специфике рассматриваемого объекта.

15. Информация о частотах реализации пожароопасных ситуаций (в том числе возникших в результате ошибок работника), необходимая для оценки риска, может быть получена непосредственно из данных о функционировании исследуемого объекта или из данных о функционировании других подобных объектов. Рекомендуемые сведения по частотам реализации инициирующих пожароопасные ситуации событий для некоторых типов оборудования объектов, частотам утечек из технологических трубопроводов, а также частотам возникновения пожаров в зданиях приведены в приложении N 1 к настоящей Методике.

 

Построение полей опасных факторов пожара для различных

сценариев его развития

 

16. При построении полей опасных факторов пожара для различных сценариев его развития учитываются:

тепловое излучение при факельном горении, пожарах проливов горючих веществ на поверхность и огненных шарах;

избыточное давление и импульс волны давления при сгорании газопаровоздушной смеси в открытом пространстве;

избыточное давление и импульс волны давления при разрыве сосуда (резервуара) в результате воздействия на него очага пожара;

избыточное давление при сгорании газопаровоздушной смеси в помещении;

концентрация токсичных компонентов продуктов горения в помещении;

снижение концентрации кислорода в воздухе помещения;

задымление атмосферы помещения;

среднеобъемная температура в помещении;

абзац исключен. - Приказ МЧС РФ от 14.12.2010 N 649;

расширяющиеся продукты сгорания при реализации пожара-вспышки.

Оценка величин указанных факторов проводится на основе анализа физических явлений, протекающих при пожароопасных ситуациях, пожарах, взрывах. При этом рассматриваются следующие процессы, возникающие при реализации пожароопасных ситуаций и пожаров или являющиеся их последствиями (в зависимости от типа оборудования и обращающихся на объекте горючих веществ):

истечение жидкости из отверстия;

истечение газа из отверстия;

двухфазное истечение из отверстия;

растекание жидкости при разрушении оборудования;

выброс газа при разрушении оборудования;

формирование зон загазованности;

сгорание газопаровоздушной смеси в открытом пространстве;

разрушение сосуда с перегретой легковоспламеняющейся жидкостью, горючей жидкостью или сжиженным горючим газом;

тепловое излучение от пожара пролива или огненного шара;

реализация пожара-вспышки;

абзац исключен. - Приказ МЧС РФ от 14.12.2010 N 649;

испарение жидкости из пролива;

образование газопаровоздушного облака (газы и пары тяжелее воздуха);

сгорание газопаровоздушной смеси в технологическом оборудовании или помещении;

пожар в помещении;

факельное горение струи жидкости и/или газа;

тепловое излучение горящего оборудования;

вскипание и выброс горящей жидкости при пожаре в резервуаре.

Также, при необходимости, рассматриваются иные процессы, которые могут иметь место при возникновении пожароопасных ситуаций и пожаров.

17. Для определения возможных сценариев возникновения и развития пожаров рекомендуется использовать метод логических деревьев событий (далее - логическое дерево).

Сценарий возникновения и развития пожароопасной ситуации (пожара) на логическом дереве отражается в виде последовательности событий от исходного до конечного события (далее - ветвь дерева событий).

Процедура построения логического дерева событий приведена в приложении N 2 к настоящей Методике.

При построении логического дерева событий используются:

условная вероятность реализации различных ветвей логического дерева событий и перехода пожароопасной ситуации или пожара на ту или иную стадию развития;

вероятность эффективного срабатывания соответствующих средств предотвращения или локализации пожароопасной ситуации или пожара (принимается исходя из статистических данных, публикуемых в научно-техническом журнале "Пожарная безопасность" или по паспортным данным завода-изготовителя оборудования);

вероятность поражения расположенного в зоне пожара технологического оборудования и зданий объекта в результате воздействия на них опасных факторов пожара, взрыва.

18. Оценка опасных факторов пожара проводится с помощью методов, приведенных в приложении N 3 к настоящей Методике.

 

Оценка последствий воздействия опасных факторов пожара

на людей для различных сценариев его развития

19. Оценка последствий воздействия опасных факторов пожара, взрыва на людей для различных сценариев их развития осуществляется на основе сопоставления информации о моделировании динамики опасных факторов пожара на территории объекта и прилегающей к нему территории и информации о критических для жизни и здоровья людей значениях опасных факторов пожара, взрыва. Для этого используются критерии поражения людей опасными факторами пожара.

20. При оценке последствий воздействия опасных факторов пожара, взрыва на людей для различных сценариев развития пожароопасных ситуаций предусматривается определение числа людей, попавших в зону поражения опасными факторами пожара, взрыва.

Для оценки пожарного риска используют, как правило, вероятностные критерии поражения людей опасными факторами пожара. Детерминированные критерии используются при невозможности применения вероятностных критериев.

Детерминированные и вероятностные критерии оценки поражающего действия волны давления и теплового излучения на людей приведены в приложении N 4 к настоящей Методике.

 

Анализ наличия систем обеспечения пожарной

безопасности зданий

 

21. При анализе влияния систем обеспечения пожарной безопасности зданий на расчетные величины пожарного риска предусматривается рассмотрение комплекса мероприятий по обеспечению пожарной безопасности объекта.

При этом рассматриваются следующие мероприятия по обеспечению пожарной безопасности:

мероприятия, направленные на предотвращение пожара;

мероприятия по противопожарной защите;

организационно-технические мероприятия по обеспечению пожарной безопасности.

22. Мероприятия по обеспечению пожарной безопасности учитываются при определении частот реализации пожароопасных ситуаций, возможных сценариев возникновения и развития пожаров и последствий воздействия опасных факторов пожара на людей для различных сценариев его развития.

 

III. Порядок вычисления расчетных величин пожарного

риска на объекте

 

23. Расчет значений индивидуального и социального пожарных рисков в зданиях и на территории объекта, а также в селитебной зоне вблизи объекта проводится с использованием в качестве промежуточной величины значения соответствующего потенциального пожарного риска.

 

Потенциальный пожарный риск на территории объекта

и в селитебной зоне вблизи объекта


24. Величина потенциального пожарного риска P(a) ( ) (далее - потенциальный риск) в определенной точке (a) как на территории объекта и в селитебной зоне вблизи объекта определяется по формуле:

                                           (1)

 

где J - число сценариев развития пожароопасных ситуаций (пожаров, ветвей логического дерева событий);

(a) - условная вероятность поражения человека в определенной точке территории   (a)   в   результате   реализации j-го сценария развития

пожароопасных ситуаций, отвечающего определенному инициирующему аварию

событию;

  - частота реализации в течение года   j-го сценария развития пожароопасных ситуаций, .

Условные вероятности поражения человека  определяются по критериям поражения людей опасными факторами пожара, взрыва.

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

При расчете риска рассматриваются различные метеорологические условия с типичными направлениями ветров и ожидаемой частотой их возникновения.

25. При проведении расчета риска предусматривается рассмотрение различных пожароопасных ситуаций, определение зон поражения опасными факторами пожара, взрыва и частот реализации указанных пожароопасных ситуаций. Для удобства расчетов территория местности может разделяться на зоны, внутри которых величины P(a) полагаются одинаковыми.

26. В необходимых случаях оценка условной вероятности поражения человека проводится с учетом совместного воздействия более чем одного опасного фактора. Так, например, для расчета условной вероятности поражения человека при реализации сценария, связанного со взрывом резервуара с легковоспламеняющейся жидкостью (далее - ЛВЖ) под давлением, находящегося в очаге пожара, необходимо учитывать, кроме теплового излучения огненного шара, воздействие волны давления.


 

Потенциальный риск в зданиях объекта

 








33. Время от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара и расчетное время эвакуации определяются по методам, приведенным в приложении N 5 к настоящей Методике.


34. При определении величин потенциального риска для работников, которые находятся в здании на территории объекта, допускается рассматривать для здания в качестве расчетного один наиболее неблагоприятный сценарий возникновения пожара, характеризующийся максимальной условной вероятностью поражения человека. В этом случае расчетная частота возникновения пожара принимается равной суммарной частоте реализации всех возможных в здании сценариев возникновения пожара.



применение объемно-планировочных и конструктивных решений, обеспечивающих ограничение распространения пожара в безопасную зону (при организации эвакуации в безопасную зону);

наличие систем противодымной защиты рассматриваемого помещения и путей эвакуации;

использование автоматических установок пожарной сигнализации (далее - АУПС) в сочетании с СОУЭ;

наличие установок пожаротушения в помещении очага пожара.

При определении условной вероятности поражения людей, находящихся в помещении очага пожара, не допускается учитывать наличие в этом помещении АУПС и СОУЭ (за исключением случаев, когда пожар не может быть обнаружен одновременно всеми находящимися в помещении людьми), а также установок пожаротушения, срабатывание которых допускается только после эвакуации находящихся в защищаемом помещении людей (например, при наличии установок газового пожаротушения).

 

Индивидуальный пожарный риск в зданиях

и на территории объекта

 

37. Индивидуальный пожарный риск (далее - индивидуальный риск) для работников объекта оценивается частотой поражения определенного работника объекта опасными факторами пожара, взрыва в течение года.

Области, на которые разбита территория объекта, нумеруются:

i = 1, ..., I.

Работники объекта нумеруются:

m = 1, ..., M

Номер работника m, однозначно определяет наименование должности работника, его категорию и другие особенности его профессиональной деятельности, необходимой для оценки пожарной безопасности. Допускается проводить расчет индивидуального риска для работника объекта, относя его к одной категории наиболее опасной профессии.



N - число помещений в здании, сооружении и строении.

40. Индивидуальный риск работника m объекта определяется как сумма величин индивидуального риска при нахождении работника на территории и в зданиях объекта, определенных по формулам (9) и (10).

41. Вероятность q im определяется, исходя из доли времени нахождения рассматриваемого человека в определенной области территории и/или в i-ом помещении здания в течение года на основе решений по организации эксплуатации и технического обслуживания оборудования и зданий объекта.

 

Индивидуальный и социальный пожарный риск в селитебной зоне

вблизи объекта

 

42. Для людей, находящихся в селитебной зоне вблизи объекта, индивидуальный пожарный риск (далее - индивидуальный риск) принимается равным величинам потенциального риска в этой зоне с учетом доли времени присутствия людей в зданиях, сооружениях и строениях вблизи производственного объекта:

для зданий, сооружений и строений классов Ф1 по функциональной пожарной опасности - 1;

для зданий, сооружений и строений классов Ф2, Ф3, Ф4 и Ф5 по функциональной пожарной опасности с круглосуточным режимом работы - 1, при некруглосуточном режиме работы - доля времени присутствия людей в соответствии с организационно-распорядительными документами для этих зданий, сооружений и строений.

(п. 42 в ред. Приказа МЧС РФ от 14.12.2010 N 649)

43. Для объекта социальный пожарный риск (далее - социальный риск) принимается равным частоте возникновения событий, ведущих к гибели 10 и более человек.




 

Индивидуальный и социальный пожарный риск для линейной

части магистральных трубопроводов

(введено Приказом МЧС РФ от 14.12.2010 N 649)

45. Величина потенциального риска P(r) () в определенной точке на расстоянии r от оси магистрального трубопровода определяется по формуле:

 



Рекомендуемый метод определения удельных частот различных типов разгерметизации магистрального трубопровода приведен в приложении N 6 к настоящей Методике.

Число рассматриваемых сценариев развития пожароопасной ситуации (пожара) при разгерметизации линейной части магистрального трубопровода, условные вероятности  и  определяются в зависимости от специфики пожарной опасности магистрального трубопровода и транспортируемого вещества.

46. Индивидуальный риск для работников, обслуживающих линейную часть магистрального трубопровода, определяется в соответствии с пунктами 37 и 40 настоящей Методики.

Для людей, находящихся в селитебной зоне вблизи линейной части магистрального трубопровода, индивидуальный риск определяется в соответствии с пунктом 42 настоящей Методики.


 

 

 

 

 

Приложение N 1

к пункту 15 Методики

 

СВЕДЕНИЯ

ПО ЧАСТОТАМ РЕАЛИЗАЦИИ ИНИЦИИРУЮЩИХ ПОЖАРООПАСНЫЕ СИТУАЦИИ

СОБЫТИЙ ДЛЯ НЕКОТОРЫХ ТИПОВ ОБОРУДОВАНИЯ ОБЪЕКТОВ, ЧАСТОТАМ

УТЕЧЕК ИЗ ТЕХНОЛОГИЧЕСКИХ ТРУБОПРОВОДОВ, А ТАКЖЕ ЧАСТОТАМ

ВОЗНИКНОВЕНИЯ ПОЖАРОВ В ЗДАНИЯХ

Список изменяющих документов

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

Таблица П1.1

 

Частоты реализации инициирующих пожароопасные ситуации

событий для некоторых типов оборудования объектов

 

Примечание: здесь и далее под полным разрушением подразумевается утечка с диаметром истечения, соответствующим максимальному диаметру подводящего или отводящего трубопровода, или разрушения резервуара, емкости, сосуда или аппарата. 



 

Таблица П1.2

 

Частоты утечек из технологических трубопроводов

 


 

Таблица П1.3

Частоты возникновения пожаров в зданиях

 


 

При использовании данных, приведенных в настоящем приложении, для какого-либо резервуара, емкости, сосуда, аппарата, технологического трубопровода следует учитывать частоты разгерметизации для всех размеров утечек, указанные для этой единицы технологического оборудования.

(абзац введен Приказом МЧС РФ от 14.12.2010 N 649)

 

 

 

 

Приложение N 2

к пункту 17 Методики

 

ПРОЦЕДУРА

ПОСТРОЕНИЯ ЛОГИЧЕСКОГО ДЕРЕВА СОБЫТИЙ

 

Построение логического дерева событий позволяет определить развитие возможных пожароопасных ситуаций и пожаров, возникающих вследствие реализации инициирующих пожароопасную ситуацию событий. Анализ дерева событий представляет собой "осмысливаемый вперед" процесс, то есть процесс, при котором исследование развития пожароопасной ситуации начинается с исходного события с рассмотрением цепи последующих событий, приводящих к возникновению пожара.

При построении логических деревьев событий учитываются следующие положения:

выбирается пожароопасная ситуация, которая может повлечь за собой возникновение аварии с пожаром с дальнейшим его развитием;

развитие пожароопасной ситуации и пожара должно рассматриваться постадийно с учетом места ее возникновения на объекте оценки риска, уровня потенциальной опасности каждой стадии и возможности ее локализации и ликвидации. На логическом дереве событий стадии развития пожароопасной ситуации и пожара могут отображаться в виде прямоугольников или других геометрических фигур с краткими названиями этих стадий;

переход с рассматриваемой стадии на новую определяется возможностью либо локализации пожароопасной ситуации или пожара на рассматриваемой стадии, либо развития пожара, связанного с вовлечением расположенных рядом технологического оборудования, помещений, зданий и т.п. в результате влияния на них опасных факторов пожара, возникших на рассматриваемой стадии. Условные вероятности переходов пожароопасной ситуации или пожара со стадии на стадию одной ветви или с ветви на ветвь определяются, исходя из свойств вовлеченных в пожароопасную ситуацию или пожар горючих веществ (физико-химические и пожароопасные свойства, параметры, при которых вещества обращаются в технологическом процессе и т.д.), условной вероятности реализации различных метеорологических условий (температура окружающей среды, скорость и направление ветра и т.д.), наличия и условной вероятности эффективного срабатывания систем противоаварийной и противопожарной защиты, величин зон поражения опасными факторами пожара, объемно-планировочных решений и конструктивных особенностей оборудования и зданий производственного объекта. При этом каждой стадии иногда присваивается идентификационный номер, отражающий последовательность переходов со стадии на стадию;

переход со стадии на стадию, как правило, отображается в виде соединяющих линий со стрелками, указывающими направления развития пожароопасной ситуации и последующего пожара. При этом соединения стадий должны отражать вероятностный характер события с выполнением условия "или" или "да", "нет";

для каждой стадии рекомендуется устанавливать уровень ее опасности, характеризующийся возможностью перехода пожароопасной ситуации или пожара на соседние с пожароопасным участки объекта;

при повторении одним из путей части другого пути развития для упрощения построения логического дерева событий иногда вводят обозначение, представляющее собой соответствующую линию со стрелкой и надпись "на стадию (код последующей стадии)".

При анализе логических деревьев событий руководствуются следующими положениями:

возможностью предотвращения дальнейшего развития пожароопасной ситуации и пожара зависит от количества стадий и времени их протекания (то есть от длины пути развития пожароопасной ситуации и пожара). Это обусловливается большей вероятностью успешной ликвидации пожароопасной ситуации и пожара, связанной с увеличением времени на локализацию пожароопасной ситуации и пожара и количеством стадий, на которых эта локализация возможна;

наличием у стадии разветвлений по принципу "или", одно из которых приходит на стадию локализации пожароопасной ситуации или пожара (например, тушение очага пожара, своевременное обнаружение утечки и ликвидация пролива, перекрытие запорной арматуры и т.п.), свидетельствует о возможности предотвращения дальнейшего развития пожароопасной ситуации и пожара по этому пути.

Значение частоты реализации отдельной стадии дерева событий или сценария определяется путем умножения частоты возникновения инициирующего события на условную вероятность развития по конкретному сценарию.

В таблице П2.1 приводятся рекомендуемые условные вероятности мгновенного воспламенения и воспламенения с задержкой по времени в зависимости от массового расхода скорости истечения горючих газа, двухфазной среды или жидкости при разгерметизации типового технологического оборудования на объекте.

Для легковоспламеняющихся жидкостей с температурой вспышки менее +28 °C должны использоваться условные вероятности воспламенения как для двухфазной среды.

При определении условных вероятностей реализации различных сценариев должны приниматься во внимание свойства поступающих в окружающее пространство горючих веществ, условные вероятности реализации различных метеорологических условий (температура окружающей среды, скорость и направление ветра и т.д.), наличие и условные вероятности эффективного срабатывания систем противоаварийной и противопожарной защиты и т.д.




 

Таблица П2.1

 

Условная вероятность мгновенного воспламенения

и воспламенения с задержкой

 

Массовый расход истечения, кг/с

Условная вероятность мгновенного воспламенения

Условная вероятность последующего воспламенения при отсутствии мгновенного воспламенения

Условная вероятность сгорания с образованием избыточного давления при образовании горючего газопаровоздушного облака и его последующем воспламенении

диапазон

номинальное среднее значение

газ

двухфазная смесь

жидкость

газ

двухфазная смесь

жидкость

газ

двухфазная смесь

жидкость

Малый (<1)

0,5

0,005

0,005

0,005

0,005

0,005

0,005

0,080

0,080

0,050

Средний (1 - 50)

10

0,035

0,035

0,015

0,036

0,036

0,015

0,240

0,240

0,050

Большой (>50)

100

0,150

0,150

0,040

0,176

0,176

0,042

0,600

0,600

0,050

Полный разрыв

Не определено

0,200

0,200

0,050

0,240

0,240

0,061

0,600

0,600

0,100

 

 

 

 

 

Приложение N 3

к пункту 18 Методики

МЕТОДЫ ОЦЕНКИ ОПАСНЫХ ФАКТОРОВ ПОЖАРА

Список изменяющих документов

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

1. В настоящем приложении представлены методы оценки опасных факторов, реализующихся при различных сценариях пожаров, взрывов на территории объекта и в селитебной зоне вблизи объекта.

Для оценки опасных факторов, реализующихся при пожарах в зданиях (помещениях) объекта, используются методы, регламентированные приложением N 5 к настоящей Методике.

 

I. Истечение жидкости и газа

 

Истечение жидкости

 

2. Рассматривается резервуар, находящийся в обваловании (рис. П3.1).

Вводятся следующие допущения:

истечение через отверстие однофазное;

резервуар имеет постоянную площадь сечения по высоте;

диаметр резервуара много больше размеров отверстия;

размеры отверстия много больше толщины стенки;

поверхность жидкости внутри резервуара горизонтальна;

температура жидкости остается постоянной в течение времени истечения.

Массовый расход жидкости G (кг/с) через отверстие во времени t (с) определяется по формуле:

 

Высота столба жидкости в резервуаре h (м) в зависимости от времени t определяется по формуле:


где H - высота обвалования, м;

L - расстояние от стенки резервуара до обвалования, м.


 


Рис. П3.1. Схема для расчета истечения жидкости

из отверстия в резервуаре

 

Количество жидкости m (кг), перелившейся через обвалование за полное время истечения, определяется по формуле:

 


 


 

Истечение сжатого газа

 

3. Массовая скорость истечения сжатого газа из резервуара определяется по формулам:

докритическое истечение:

 


 

Истечение сжиженного газа из отверстия в резервуаре

 


 

Растекание жидкости при квазимгновенном

разрушении резервуара

 

5. Под квазимгновенным разрушением резервуара следует понимать внезапный (в течение секунд или долей секунд) распад резервуара на приблизительно равные по размеру части. При такой пожароопасной ситуации часть хранимой в резервуаре жидкости может перелиться через обвалование.

Ниже представлена математическая модель, позволяющая оценить долю жидкости, перелившейся через обвалование при квазимгновенном разрушении резервуара. Приняты следующие допущения:

рассматривается плоская одномерная задача;

время разрушения резервуара много меньше характерного времени движения гидродинамической волны до обвалования;

жидкость является невязкой;

трение жидкости о поверхность земли отсутствует;

поверхность земли является плоской, горизонтальной.

Система уравнений, описывающих движение жидкости, имеет вид:


Граничные условия с учетом геометрии задачи (рис. П3.2) имеют вид:


где a - высота обвалования.

Массовая доля жидкости Q (%), перелившейся через обвалование к моменту времени T, определяется по формуле:




 


 

Рис. П3.2. Типичная картина движения жидкости в обваловании

при квазимгновенном разрушении резервуара

 


 

Рис. П3.3. Зависимость доли перелившейся через обвалование

 жидкости Q от параметра a/ : 1 - расчет; 2 - эксперимент

                                    




 

II. Количественная оценка массы горючих веществ,

поступающих в окружающее пространство в результате

возникновения пожароопасных ситуаций

 

6. Количество поступивших в окружающее пространство горючих веществ, которые могут образовать взрывоопасные газопаровоздушные смеси или проливы горючих сжиженных газов, легковоспламеняющихся и горючих жидкостей на подстилающей поверхности, определяется, исходя из следующих предпосылок:

а) происходит расчетная авария одного из резервуаров (аппаратов) или трубопровода;

б) все содержимое резервуара (аппарата, трубопровода) или часть продукта (при соответствующем обосновании) поступает в окружающее пространство. При этом в случае наличия на объекте нескольких аппаратов (резервуаров) расчет следует проводить для каждого резервуара (аппарата);

в) при разгерметизации резервуара (аппарата) происходит одновременно утечка веществ из трубопроводов, питающих резервуар по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов. Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства и их надежности, характера технологического процесса и вида расчетной аварии.

При отсутствии данных допускается расчетное время отключения технологических трубопроводов принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении;

г) в качестве расчетной температуры при пожароопасной ситуации с наземно расположенным оборудованием допускается принимать максимально возможную температуру воздуха в соответствующей климатической зоне, а при пожароопасной ситуации с подземно расположенным оборудованием - температуру грунта, условно равную максимальной среднемесячной температуре окружающего воздуха в наиболее теплое время года;

е) длительность испарения жидкости с поверхности пролива принимается равной времени ее полного испарения, но не более 3600 с. Для проливов жидкости до 20 кг время испарения допускается принимать равным 900 с.

Допускается использование показателей пожаровзрывоопасности для смесей веществ и материалов по наиболее опасному компоненту.

 

Разгерметизация надземного резервуара

7. Масса жидкости, поступившей в окружающее пространство при разгерметизации резервуара, определяется по формуле:



Масса жидкости, поступившей самотеком при полном разрушении наземного или надземного трубопровода, выходящего из резервуара, определяется по формулам:



При проливе на неограниченную поверхность площадь пролива  (м2) жидкости определяется по формуле:

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

 

Масса паров ЛВЖ, выходящих через дыхательную арматуру

 

8. В случае наполнения резервуара масса паров определяется по формуле:


 

Масса паров ЛВЖ при испарении со свободной

поверхности в резервуаре

 

9. Масса паров ЛВЖ при испарении со свободной поверхности в резервуаре определяется по формуле:

    


 

III. Максимальные размеры взрывоопасных зон

 


 


 

IV. Определение параметров волны давления при сгорании

газо-, паро- или пылевоздушного облака

11. Методика количественной оценки параметров воздушных волн давления при сгорании газо-, паро- или пылевоздушного облака (далее - облако) распространяется на случаи выброса горючих газов, паров или пыли в атмосферу на производственных объектах.

Основными структурными элементами алгоритма расчетов являются:

определение ожидаемого режима сгорания облака;

расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления для различных режимов;

определение дополнительных характеристик взрывной нагрузки;

оценка поражающего воздействия.

Исходными данными для расчета параметров волн давления при сгорании облака являются:

вид горючего вещества, содержащегося в облаке;


При расчете параметров сгорания облака, расположенного на поверхности земли, величина эффективного энергозапаса удваивается.

 

Определение ожидаемого режима сгорания облака

12. Ожидаемый режим сгорания облака зависит от типа горючего вещества и степени загроможденности окружающего пространства.

 

Классификация горючих веществ по степени чувствительности

 

13. Вещества, способные к образованию горючих смесей с воздухом, по степени своей чувствительности к возбуждению взрывных процессов разделены на четыре класса:

класс 1 - особо чувствительные вещества (размер детонационной ячейки менее 2 см);

класс 2 - чувствительные вещества (размер детонационной ячейки лежит в пределах от 2 до 10 см);

класс 3 - среднечувствительные вещества (размер детонационной ячейки лежит в пределах от 10 до 40 см);

класс 4 - слабочувствительные вещества (размер детонационной ячейки больше 40 см).

Классификация наиболее распространенных в промышленном производстве горючих веществ приведена в таблице П3.1. В случае, если вещество не внесено в классификацию, его следует классифицировать по аналогии с имеющимися в списке веществами, а при отсутствии информации о свойствах данного вещества его следует отнести к классу 1, т.е. рассматривать наиболее опасный случай.

Таблица П3.1

 

Класс 1

Класс 2

Класс 3

Класс 4

Ацетилен

Акрилонитрил

Ацетальдегид

Бензол

Винилацетилен

Акролеин

Ацетон

Декан

Водород

Бутан

Бензин

о-Дихлорбензол

Гидразин

Бутилен

Винилацетат

Додекан

Изопропилнитрат

Бутадиен

Винилхлорид

Метан

Метилацетилен

1,3-Пентадиен

Гексан

Метилбензол

Нитрометан

Пропан

Изооктан

Метилмеркаптан

Окись пропилена

Пропилен

Метиламин

Метилхлорид

Окись этилена

Сероуглерод

Метилацетат

Окись углерода

Этилнитрат

Этан

Метилбутилкетон

Этиленбензол

 

Этилен

Метилпропилкетон

 

Эфиры:

Метилэтилкетон

 

 

диметиловый

Октан

 

дивиниловый

Пиридин

 

метилбутиловый

Сероводород

 

 

Спирты:

 

 

Широкая фракция легких углеводородов

метиловый

 

 

этиловый

 

 

 

пропиловыи

 

амиловый

 

 

 

изобутиловый

 

 

 

изопропиловый

 

 

 

Циклогексан

 

Этилформиат

 

 

Этилхлорид

 

 


 

Таблица П3.2

 

Классы горючих веществ

Бета

Классы горючих веществ

Бета

Класс 1

Класс 3

Ацетилен

1,1

Кумол

0,84

Метилацетилен

1,05

Метиламин

0,70

Винилацетилен

1,03

Спирты:

Окись этилена

0,62

Метиловый

0,45

Гидразин

0,44

Этиловый

0,61

Изопропилнитрат

0,41

Пропиловый

0,69

Этилнитрат

0,30

Амиловый

0,79

Водород

2,73

Циклогексан

1

Нитрометан

0,25

Ацетальальдегид

0,56

Класс 2

Винилацетат

0,51

Этилен

1,07

Бензин

1

Диэтилэфир

0,77

Гексан

1

Дивинилэфир

0,77

Изооктан

1

Окись пропилена

0,7

Пиридин

0,77

Акролеин

0,62

Циклопропан

1

Сероуглерод

0,32

Этиламин

0,80

Бутан

1

Класс 4

Бутилен

1

Бутадиен

1

Метан

1,14

1,3-Пентадиен

1

Трихлорэтан

0,15

Этан

1

Метилхлорид

0,12

Диметилэфир

0,66

Бензол

1

Диизопропиловый эфир

0,82

Декан

1

ШФЛУ

1

Додекан

1

Пропилен

1

Метилбензол

1

Пропан

1

Метилмеркаптан

0,53

Класс 3

Окись углерода

0,23

Винилхлорид

0,42

Дихлорэтан

0,24

Сероводород

0,34

Дихлорбензол

0,42

Ацетон

0,65

Трихлорэтан

0,14

 

Классификация окружающего пространства

по степени загроможденности

 

15. Характером загроможденности окружающего пространства в значительной степени определяется скорость распространения пламени при сгорании облака и, следовательно, параметры волны давления. Характеристики загроможденности окружающего пространства разделяются на четыре класса:

класс I - наличие длинных труб, полостей, каверн, заполненных горючей смесью, при сгорании которой возможно ожидать формирование турбулентных струй продуктов сгорания, имеющих размеры не менее трех размеров детонационной ячейки данной смеси. Если размер детонационной ячейки для данной смеси не известен, то минимальный характерный размер струй принимается равным 5 см для веществ класса 1, 20 см для веществ класса 2, 50 см для веществ класса 3 и 150 см для веществ класса 4;

класс II - сильно загроможденное пространство: наличие полузамкнутых объемов, высокая плотность размещения технологического оборудования, лес, большое количество повторяющихся препятствий;

класс III - средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк;

класс IV - слабо загроможденное и свободное пространство.

 

Классификация режимов сгорания облака

 

16. Для оценки воздействия сгорания облака возможные режимы сгорания разделяются на шесть классов по диапазонам скоростей их распространения следующим образом:

класс 1 - детонация или горение со скоростью фронта пламени 500 м/с и более;

класс 2 - дефлаграция, скорость фронта пламени 300 - 500 м/с;

класс 3 - дефлаграция, скорость фронта пламени 200 - 300 м/с;

класс 4 - дефлаграция, скорость фронта пламени 150 - 200 м/с;

класс 5 - дефлаграция, скорость фронта пламени определяется по формуле:



17. Ожидаемый режим сгорания облака определяется с помощью таблицы П3.3, в зависимости от класса горючего вещества и класса загроможденности окружающего пространства.

Таблица П3.3

 

Класс горючего вещества

Класс загроможденности окружающего пространства

I

II

III

IV

1

1

1

2

3

2

1

2

3

4

3

2

3

4

5

4

3

4

5

6

 

При определении максимальной скорости фронта пламени для режимов сгорания 2 - 4 классов дополнительно рассчитывается видимая скорость фронта пламени по соотношению (П3.37). В том случае, если полученная величина больше максимальной скорости, соответствующей данному классу, она принимается по формуле (П.3.37).

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

Расчет максимального избыточного давления и импульса фазы

сжатия воздушных волн давления

 



Размерные величины избыточного давления и импульса фазы сжатия определяются по формулам:


 


где сигма - степень расширения продуктов сгорания (для газопаровоздушных смесей допускается принимать равной 7, для пылевоздушных смесей - 4);

u - видимая скорость фронта пламени, м/с.


V. Параметры волны давления при взрыве резервуара

с перегретой жидкостью или сжиженным газом при воздействии

на него очага пожара





 

VI. Интенсивность теплового излучения

 

22. В настоящем разделе приводятся методы расчета интенсивности теплового излучения от пожара пролива на поверхность, огненного шара, а также радиуса воздействия продуктов сгорания паровоздушного облака в случае пожара-вспышки.

Пожар пролива

 

23. Интенсивность теплового излучения q (кВт/м2) для пожара пролива ЛВЖ, ГЖ, сжиженного природного газа (далее - СПГ) или СУГ определяется по формуле:


 

Таблица П3.4

 

Среднеповерхностная плотность теплового излучения

пламени в зависимости от диаметра очага и удельная массовая

скорость выгорания для некоторых жидких

углеводородных топлив

Топливо

, кВт/м2, при d, м

, кг/(м2·с)

10

20

30

40

50

СПГ

220

180

150

130

120

0,08

СУГ (пропан-бутан)

80

63

50

43

40

0,1

Бензин

60

47

35

28

25

0,06

Дизельное топливо

40

32

25

21

18

0,04


 

Примечание. Для диаметров очага менее 10 м или более 50 м следует принимать  такой же, как и для очагов диаметром 10 м и 50 м соответственно.

При отсутствии данных для нефти и нефтепродуктов допускается величину  (кВт/м2) определять по формуле:

 

, (П3.53)

 

где:

d - эффективный диаметр пролива, м.

При отсутствии данных для однокомпонентных жидкостей допускается величину  (кВт/м2) определять по формуле:


Угловой коэффициент облученности  определяется по формуле:

 

, (П3.54)

 

где:

 - факторы облученности для вертикальной и горизонтальной площадок соответственно, определяемые для площадок, расположенных в 90° секторе в направлении наклона пламени, по следующим формулам:

 

, (П3.55)

 

, (П3.56)

 


где:

X - расстояние от геометрического центра пролива до облучаемого объекта, м;

d - эффективный диаметр пролива, м;

L - длина пламени, м;


где:


 

Огненный шар

 

24. Интенсивность теплового излучения q (кВт/м2) для огненного шара определяется по формуле (П3.52).



VII. Определение радиуса воздействия продуктов сгорания

паровоздушного облака в случае пожара-вспышки

 


VIII. Испарение жидкости и СУГ из пролива


 


Таблица П3.5

 

Скорость воздушного потока, м/с

Значение коэффициента эта при температуре t (°C) воздуха

10

15

20

30

35

0

1,0

1,0

1,0

1,0

1,0

0,1

3,0

2,6

2,4

1,8

1,6

0,2

4,6

3,8

3,5

2,4

2,3

0,5

6,6

5,7

5,4

3,6

3,2

1,0

10,0

8,7

7,7

5,6

4,6




 

IX. Размеры факела при струйном горении


29. При проведении оценки пожарной опасности горящего факела при струйном истечении сжатых горючих газов, паровой и жидкой фазы СУГ, СПГ, ЛВЖ и ГЖ под давлением допускается принимать следующее:

- зона непосредственного контакта пламени с окружающими объектами определяется размерами факела;

- длина факела  не зависит от направления истечения продукта и скорости ветра;

- наибольшую опасность представляют горизонтальные факелы, условную вероятность реализации которых следует принимать равной 0,67;

- поражение человека в горизонтальном факеле происходит в 30° секторе с радиусом, равным длине факела;

- воздействие горизонтального факела на соседнее оборудование, приводящее к его разрушению (каскадному развитию аварии), происходит в 30° секторе, ограниченном радиусом, равным ;

- за пределами указанного сектора на расстояниях от  до 1,5  тепловое излучение от горизонтального факела составляет 10 кВт/м2;

- тепловое излучение от вертикальных факелов может быть определено по формулам П3.52, П.3.54 - П3.57.7 и П3.62, принимая L равным , d равным  равным 0, а  по формулам П3.53 - П3.53.2 или таблице П3.4 в зависимости от вида топлива. При отсутствии данных и невозможности рассчитать  по представленным формулам допускается эту величину принимать равной 200 кВт/м2;

- при истечении жидкой фазы СУГ или СПГ из отверстия с эквивалентным диаметром до 100 мм при мгновенном воспламенении происходит полное сгорание истекающего продукта в факеле без образования пожара пролива;

- область возможного воздействия пожара-вспышки при струйном истечении совпадает с областью воздействия факела (30° сектор, ограниченный радиусом, равным );

- при мгновенном воспламенении струи газа возможность формирования волн давления допускается не учитывать.

(п. 29 в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

 

 

 

Приложение N 4

к пункту 20 Методики

ДЕТЕРМИНИРОВАННЫЕ И ВЕРОЯТНОСТНЫЕ КРИТЕРИИ

ОЦЕНКИ ПОРАЖАЮЩЕГО ДЕЙСТВИЯ ВОЛНЫ ДАВЛЕНИЯ И ТЕПЛОВОГО

ИЗЛУЧЕНИЯ НА ЛЮДЕЙ

На объектах наиболее опасными поражающими факторами пожара являются волна давления и расширяющиеся продукты сгорания при различных режимах сгорания газо-, паро- или пылевоздушного облака, а также тепловое излучение пожаров.

Детерминированные критерии показывают значения параметров опасного фактора пожара, при которых наблюдается тот или иной уровень поражения людей.

В случае использования детерминированных критериев условная вероятность поражения принимается равной 1, если значение критерия превышает предельно допустимый уровень, и равной 0, если значение критерия не превышает предельно допустимый уровень поражения людей.

Вероятностные критерии показывают, какова условная вероятность поражения людей при заданном значении опасного фактора пожара.

Ниже приведены некоторые критерии поражения людей перечисленными выше опасными факторами пожара.


I. Критерии поражения волной давления

 

Детерминированные критерии поражения людей, в том числе находящихся в здании, избыточным давлением при сгорании газо-, паро- или пылевоздушных смесей в помещениях или на открытом пространстве приведены в таблице П4.1.






 

Таблица П4.1

 

Степень поражения

Избыточное давление, кПа

Полное разрушение зданий

100

50%-е разрушение зданий

53

Средние повреждения зданий

28

Умеренные повреждения зданий (повреждение внутренних перегородок, рам, дверей и т.п.)

12

Нижний порог повреждения человека волной давления

5

Малые повреждения (разбита часть остекления)

3

 

Таблица П4.2

 

Условная вероятность поражения, %

Величина пробит-функции Pr

0

1

2

3

4

5

6

7

8

9

0

-

2,67

2,95

3,12

3,25

3,36

3,45

3,52

3,59

3,66

10

3,72

3,77

3,82

3,87

3,92

3,96

4,01

4,05

4,08

4,12

20

4,16

4,19

4,23

4,26

4,29

4,33

4,36

4,39

4,42

4,45

30

4,48

4,50

4,53

4,56

4,59

4,61

4,64

4,67

4,69

4,72

40

4,75

4,77

4,80

4,82

4,85

4,87

4,90

4,92

4,95

4,97

50

5,00

5,03

5,05

5,08

5,10

5,13

5,15

5,18

5,20

5,23

60

5,25

5,28

5,31

5,33

5,36

5,39

5,41

5,44

5,47

5,50

70

5,52

5,55

5,58

5,61

5,64

5,67

5,71

5,74

5,77

5,81

80

5,84

5,88

5,92

5,95

5,99

6,04

6,08

6,13

6,18

6,23

90

6,28

6,34

6,41

6,48

6,55

6,64

6,75

6,88

7,05

7,33

99

7,33

7,37

7,41

7,46

7,51

7,58

7,65

7,75

7,88

8,09

 

   

 

При оценке условной вероятности поражения человека, находящегося в здании, следует использовать пробит-функцию, определяемую по формулам (П4.7) - (П4.8).


II. Критерии поражения тепловым излучением

 

 

 

Таблица П4.3

Материалы

q, кВт/м2 CR

Древесина (сосна влажностью 12%)

13,9

Древесно-стружечные плиты (плотностью 417 кг/м3)

8,3

Торф брикетный

13,2

Торф кусковой

9,8

Хлопок-волокно

7,5

Слоистый пластик

15,4

Стеклопластик

15,3

Пергамин

17,4

Резина

14,8

Уголь

35,0

Рулонная кровля

17,4

Картон серый

10,8

Декоративный бумажно-слоистый пластик

19,0 - 24,0

Металлопласт

24,0 - 27,0

Плита древесно-волокнистая

13,0

Плита древесно-стружечная

12,0

Плита древесно-стружечная с отделкой "Полиплен"

12,0

Плита древесно-волокнистая с лакокрасочным покрытием под ценные породы дерева

12,0 - 16,0

Кожа искусственная

17,9 - 20,0

Стеклопластик на полиэфирной основе

14,0

Лакокрасочные покрытия

25,0

Обои моющиеся ПВХ на бумажной основе

12,0

Линолеум ПВХ

10,0 - 12,0

Линолеум алкидный

10,0

Линолеум ПВХ на тканевой основе

6,0 - 12,0

Покрытие ковровое

4,0 - 6,0

Сено, солома (при минимальной влажности до 8%)

7,0

Легковоспламеняющиеся, горючие и трудногорючие жидкости при температуре самовоспламенения, °C:

 

300

12,1

350

15,5

400

19,9

500 и выше

28,0 и выше

 

Таблица П4.4

 

Степень поражения

Интенсивность излучения, кВт/м2

Без негативных последствий в течение длительного времени

1,4

Безопасно для человека в брезентовой одежде

4,2

Непереносимая боль через 20 - 30 с

7,0

Ожог 1 степени через 15 - 20 с

Ожог 2 степени через 30 - 40 с

Непереносимая боль через 3 - 5 с

10,5

Ожог 1 степени через 6 - 8 с

Ожог 2 степени через 12 - 16 с

 

Для поражения человека тепловым излучением величина пробит-функции описывается формулой:

 

где t - эффективное время экспозиции, с;

q - интенсивность теплового излучения, кВт/м2.

Величина эффективного времени экспозиции t определяется по формулам:

для огненного шара:

 


Условная вероятность поражения человека, попавшего в зону непосредственного воздействия пламени пожара пролива или факела, принимается равной 1.

Для пожара-вспышки следует принимать, что условная вероятность поражения человека, попавшего в зону воздействия высокотемпературными продуктами сгорания газопаровоздушного облака, равна 1, за пределами этой зоны условная вероятность поражения человека принимается равной 0.

 

 

Приложение N 5

к пункту 33 Методики

 

МЕТОДЫ

ОПРЕДЕЛЕНИЯ ВРЕМЕНИ ОТ НАЧАЛА ПОЖАРА ДО БЛОКИРОВАНИЯ

ЭВАКУАЦИОННЫХ ПУТЕЙ В РЕЗУЛЬТАТЕ РАСПРОСТРАНЕНИЯ НА НИХ

ОПАСНЫХ ФАКТОРОВ ПОЖАРА И РАСЧЕТНОГО ВРЕМЕНИ ЭВАКУАЦИИ

Список изменяющих документов

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

I. Метод определения времени от начала

пожара до блокирования эвакуационных путей в результате

распространения на них опасных факторов пожара

(в ред. Приказа МЧС РФ от 14.12.2010 N 649)

 

Время от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара определяется путем выбора из полученных в результате расчетов значений критической продолжительности пожара минимального времени:

 (П5.1)

Критическая продолжительность пожара по каждому из опасных факторов определяется как время достижения этим фактором критического значения на путях эвакуации на высоте 1,7 м от пола. Критические значения по каждому из опасных факторов составляют:

по повышенной температуре - +70 °C;

по тепловому потоку - 1400 Вт/м2;

по потере видимости - 20 м;

по пониженному содержанию кислорода - 0,226 ;

по каждому из токсичных газообразных продуктов горения - (CO2 - 0,11 , CO - , HCL - ).

Для описания термогазодинамических параметров пожара могут применяться три вида моделей: интегральные, зонные (зональные) и полевые.

Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:

интегральный метод:

для зданий, содержащих развитую систему помещений малого объема простой геометрической конфигурации;

для помещений, где характерный размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз);

для предварительных расчетов с целью выявления наиболее опасного сценария пожара;

зонный (зональный) метод:

для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз), когда размер очага пожара существенно меньше размеров помещения;

для рабочих зон, расположенных на разных уровнях в пределах одного помещения (площадки обслуживания оборудования, внутренние этажерки и т.д.);

полевой метод:

для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (например, многосветные пространства с системой галерей и примыкающих коридоров);

для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые галереи и т.д.);

для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара и т.д.).

При рассмотрении сценариев, связанных со сгоранием газо-, паро- или пылевоздушной смеси в помещении категории А или Б, условная вероятность поражения человека в этом помещении принимается равной 1 при сгорании газо-, паро- или пылевоздушной смеси в этом помещении до завершения эвакуации людей и 0 после завершения эвакуации людей.

Для помещения очага пожара, удовлетворяющего критериям применения интегрального метода, критическую продолжительность пожара  (с) по условию достижения каждым из опасных факторов пожара предельно допустимых значений в зоне пребывания людей (рабочей зоне) можно оценить по формулам:

по повышенной температуре:

 

; (П5.2)

 

по потере видимости:

; (П5.3)

по пониженному содержанию кислорода:

; (П5.4)

по каждому из газообразных токсичных продуктов горения:

 

; (П5.5)

, (П5.6)

 

где:

 - начальная температура воздуха в помещении, °C;

B - размерный комплекс, зависящий от теплоты сгорания материала и свободного объема помещения, кг;

n - показатель степени, учитывающий изменение массы выгорающего материала во времени;

A - размерный параметр, учитывающий удельную массовую скорость выгорания горючего вещества и площадь пожара, кг/base_2_109874_335;

Z - безразмерный параметр, учитывающий неравномерность распределения опасного фактора пожара по высоте помещения;

Q - низшая теплота сгорания материала, МДж/кг;

 - удельная изобарная теплоемкость воздуха, МДж/кг;

 - коэффициент теплопотерь;

 - коэффициент полноты горения;

V - свободный объем помещения, м3;

 - коэффициент отражения предметов на путях эвакуации;

E - начальное освещение, лк;

 - предельная дальность видимости в дыму, м;

 - дымообразующая способность горящего материала, Нп·м2/кг;

L - удельный выход токсичных газов при сгорании 1 кг горючего вещества, кг/кг;

X - предельно допустимое содержание токсичного газа в помещении, кг/м3;

 - удельный расход кислорода, кг/кг.

Свободный объем помещения соответствует разности между геометрическим объемом и объемом оборудования или предметов, находящихся внутри. При отсутствии данных допускается свободный объем принимать равным 80% геометрического объема помещения.

Если под знаком логарифма получается отрицательное число, то данный опасный фактор пожара может не учитываться.

Параметр Z определяется по формуле:

, при H  6 м, (П5.7)

где:

h - высота рабочей зоны, м;

H - высота помещения, м.

Высота рабочей зоны определяется по формуле:

, (П5.8)

где:

 - высота площадки, на которой находятся люди, над полом помещения, м;

 - разность высот пола, равная нулю при горизонтальном его расположении, м.

Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. При определении необходимого времени эвакуации следует ориентироваться на наиболее высоко расположенные в помещении участки возможного пребывания людей.

Параметры A и n определяются следующим образом:

для случая горения жидкости с установившейся скоростью:

 

, при n = 1; (П5.9)

 

для случая горения жидкости с неустановившейся скоростью:

, при n = 1,5; (П5.10)

для случая кругового распространения пламени по поверхности горючего вещества или материала:

 

, при n = 3; (П5.11)

для вертикальной или горизонтальной поверхности горения в виде прямоугольника, одна из сторон которого увеличивается в двух направлениях за счет распространения пламени:

, при n = 2, (П5.12)

где:

 - удельная массовая скорость выгорания вещества, кг/(м2·с);

F - площадь пролива жидкости;

 - время установления стационарного режима горения жидкости, с;

 - линейная скорость распространения пламени, м/с;

b - перпендикулярный к направлению движения пламени размер зоны горения, м.

Случай факельного горения в помещении может рассматриваться как горение жидкости с установившейся скоростью с параметром A, равным массовому расходу истечения горючего вещества из оборудования, и показателем степени n, равным 1.

При отсутствии специальных требований значения  и E принимаются равными 0,3 и 50 лк соответственно, а  равным 20 м.

При расположении людей на различных по высоте площадках критическую продолжительность пожара следует определять для каждой площадки.

 

II. Метод определения расчетного времени эвакуации


 




 

Таблица П5.1

Интенсивность и скорость движения людского потока

на разных участках путей эвакуации в зависимости

от плотности потока

Плотность потока D, м2/м2

Горизонтальный путь

Дверной проем, интенсивность q, м/мин.

Лестница вниз

Лестница вверх

скорость v, м/мин.

интенсивность q, м/мин.

скорость v, м/мин.

интенсивность q, м/мин.

скорость v, м/мин.

интенсивность q, м/мин.

0,01

100

1,0

1,0

100

1,0

60

0,6

0,05

100

5,0

5,0

100

5,0

60

3,0

0,10

80

8,0

8,7

95

9,5

53

5,3

0,20

60

12,0

13,4

68

13,6

40

8,0

0,30

47

14,1

16,5

52

15,6

32

9,6

0,40

40

16,0

18,4

40

16,0

26

10,4

0,50

33

16,5

19,6

31

15,6

22

11,0

0,60

28

16,3

19,05

24,5

14,1

18,5

10,75

0,70

23

16,1

18,5

18

12,6

15

10,5

0,80

19

15,2

17,3

13

10,4

13

10,4

0,90

и более

15

13,5

8,5

8

7,2

11

9,9


При невозможности выполнения условия (П5.18) интенсивность и скорость движения людского потока по участку i определяют по таблице П5.1 при значении D = 0,9 и более. При этом следует учитывать время задержки движения людей из-за образовавшегося скопления.


  

 

 

Рис. П5.1. Слияние людских потоков

 

 

 

Приложение N 6

к пункту 45 Методики

РЕКОМЕНДУЕМЫЙ МЕТОД

ОПРЕДЕЛЕНИЯ УДЕЛЬНЫХ ЧАСТОТ РАЗЛИЧНЫХ ТИПОВ РАЗГЕРМЕТИЗАЦИИ

МАГИСТРАЛЬНОГО ТРУБОПРОВОДА

Список изменяющих документов

(введен Приказом МЧС РФ от 14.12.2010 N 649)

 

Удельная частота разгерметизации линейной части магистрального трубопровода определяется следующим образом:

а) на основе статистических данных определяется базовая частота разгерметизации . При отсутствии данных для вновь проектируемых магистральных трубопроводов допускается  принимать равной:

 - для магистральных газопроводов;

 - для магистральных нефтепроводов;

б) выделяются рассматриваемые при проведении расчетов типы разгерметизации:

для магистральных газопроводов:

j = 1 - проколы (трещины, точечные отверстия), определяемые как отверстия с диаметром 20 мм;

j = 2 - отверстия с диаметром, равным 10% от диаметра магистрального трубопровода;

j = 3 - разрыв, определяемый как образование отверстия размером, равным диаметру магистрального трубопровода;

для магистральных нефтепроводов:

j = 1 - "свищи" - отверстия с характерными размерами 0,3·Lp/D (Lp - характерный размер продольной трещины, D - условный диаметр магистрального трубопровода), площадь дефектного отверстия - 0,0072·So (So - площадь поперечного сечения магистрального трубопровода);

j = 2 - трещины, характерный размер 0,75·Lp/D, площадь дефектного отверстия - 0,0448·So;

j = 3 - "гильотинный" разрыв, характерный размер 0,75·Lp/D, площадь дефектного отверстия - 0,179·So.

Допускается при соответствующем обосновании учитывать и другие типы разгерметизации;

в) рассматриваются шесть причин разгерметизации (i = 1 ... 6 - таблица П6.1);

г) удельная частота разгерметизации линейной части магистрального трубопровода для j-го типа разгерметизации на участке m трубопровода определяется по формуле:

 

, (П6.1)

где:

 - базовая частота разгерметизации магистрального трубопровода, ;

 - относительная доля i-ой причины разгерметизации для j-го типа разгерметизации на участке m магистрального трубопровода;

д) величины  для различных типов разгерметизации для различных участков магистрального трубопровода определяются по формулам:

 

, (П6.2)

, (П6.3)

 

, (П6.4)

 

, (П6.5)

 

, (П6.6)

, (П6.7)

 

где:

- поправочные коэффициенты, определяемые по таблице П6.2 с учетом технических характеристик магистрального трубопровода.



 

Таблица П6.1

 

Среднестатистическая относительная доля аварий, вызванных

данной причиной, на магистральных трубопроводах

Причина

Среднестатистическая относительная доля аварий, вызванных данной причиной, , %

проколы (трещины), точечные отверстия

отверстие

разрыв

всего

j = 1

j = 2

j = 3

i = 1

Внешнее воздействие

13,2/16,8

26,6/26,2

9,7/6,5

49,5

i = 2

Брак строительства, дефект материалов

10,6/11,3

4,7/4,6

1,2/0,6

16,5

i = 3

Коррозия

15,2/15,2

0,2/0,2

0/0

15,4

i = 4

Движение грунта, вызванное природными явлениями

1,8/2,2

2,2/2,2

3,3/2,9

7,3

i = 5

Ошибки оператора

3,0/3,0

1,6/1,6

0/0

4,6

i = 6

Прочие и неизвестные причины

6,5/6,5

0,2/0,2

0/0

6,7

 

Итого

50,3/55,0

35,51/35,0

14,2/10,0

100

 

Примечание. В числителе приведены значения для магистральных газопроводов, в знаменателе - магистральных нефтепроводов.

 

Таблица П6.2

Поправочные коэффициенты к среднестатистической

относительной доле аварии

 

Поправочный коэффициент

Значение поправочного коэффициента

1

2

Поправочный коэффициент , зависящий от толщины стенки трубопровода  (мм)


Поправочный коэффициент , зависящий от минимальной глубины заложения трубопровода (м):

менее 0,8 м

 = 1

от 0,8 до 1 м

 = 0,93

более 1 м

 = 0,73

Поправочный коэффициент  для участков переходов, выполненных методом наклонно направленного бурения (далее - ННБ):

на участках этих переходов

 = 0

вне этих участков

 = 1

Поправочный коэффициент  переходов через искусственные препятствия:

 

на переходах через автодороги, железные дороги и инженерные коммуникации

 = 2

вне переходов либо на них предусмотрены защитные футляры (кожухи) из стальных труб с герметизацией межтрубного пространства

 = 1

Поправочный коэффициент , учитывающий применение материалов и средств контроля при строительстве:

для трубопроводов, построенных в соответствии с требованиями нормативных документов

 = 1

при использовании улучшенных материалов и дополнительных средств контроля при строительстве и последующей эксплуатации трубопроводов

 = 0,07

Поправочный коэффициент , учитывающий влияние толщины стенки трубопровода (мм) на частоту разгерметизации по причине коррозии:

 

менее 5

 = 2

от 5 до 10

 = 1

более 10

 = 0,03

Поправочный коэффициент , учитывающий влияние применяемых систем защиты от коррозии:

для трубопроводов, построенных в соответствии с требованиями нормативных документов

 = 1

при использовании улучшенной системы защиты (тип и качество изоляционного покрытия, электрохимическая защита, внутритрубная диагностика и т.п.)

 = 0,16

Поправочный коэффициент , зависящий от диаметра трубопровода D (мм)


Поправочный коэффициент , учитывающий прохождение трассы трубопровода через водные преграды и заболоченные участки:

 

для водных преград

 = 5

для заболоченных участков

 = 2

при отсутствии переходов либо выполненных методом ННБ

 = 1

Поправочный коэффициент , зависящий от диаметра трубопровода D (мм)


 


B-320
Мы используем cookie (файлы с данными о прошлых посещениях сайта) для персонализации и удобства пользователей. Так как мы серьезно относимся к защите персональных данных пожалуйста ознакомьтесь с условиями и правилами их обработки. Вы можете запретить сохранение cookie в настройках своего браузера.
×
Вход на сайт